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Objective: Emerging evidence indicates that boron (B) plays a role in bone formation and

maintenance. Thus, a study was performed to determine whether dietary B-deficiency

affects periodontal alveolar bone modelling and remodelling.

Design: Weanling Swiss mice (n = 30) were divided into three groups: control diet (GI, 3 mg B

kg); B-deficient diet (GII, 0.07 mg B/kg); and pair-fed with GII (GIII). The animals were

maintained on their respective diets for 9 weeks and then sacrificed. The guidelines o

the NIH for the care and use of laboratory animals were observed. The mandibles were

resected, fixed, decalcified in 10% EDTA and embedded in paraffin. Buccolingually oriented

sections were obtained at the level of the mesial root of the first lower molar and stained

with H–E. Histomorphometric studies were performed separately on the buccal and lingua

sides of the periodontal alveolar bone. Percentages of osteoblast surfaces (ObSs), eroded

surfaces (ESs), and quiescent surfaces (QSs) were determined.

Results: No statistically significant differences in food intake and body weight were observed

between the groups. When compared with GI and GIII mice, GII mice (B-deficient) had 63%

and 48% reductions in ObS and 58% and 73% increases in QS in buccal and lingual plates

respectively. ES were not affected by B nutriture.

Conclusion: The results are evidence that dietary boron deprivation in mice alters period-

ontal alveolar bone modelling and remodelling by inhibiting bone formation.

# 2008 Elsevier Ltd. All rights reserved
1. Introduction

Alveolar bone is the most malleable of the periodontal tissues,

because it is subjected to continuous modelling and remodel-

ling associated with tooth eruption and functional require-
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ments.1–3 Furthermore, the environment influences healthy

and diseased periodontal tissues.3,4 It has been stated that diet

and nutrition are major multifactorial environmental factors

in the etiology and pathogenesis of craniofacial disorders, i.e.

periodontal diseases.5–7
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Table 1 – Composition of the basal dieta

Ingredient g/kg

Ground corn, acid-washed 713.486

Casein, vitamin-free 160.000

Safflower oil 75.000

Tert-butylhydroquinone 0.014

DL-a-Tocopherol 0.200

Choline chloride 1.000

L-Cystine 2.000

Vitamin mixb 4.000

Macro-mineral mixc 29.300
d
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Nutrition is an important modifiable factor in the devel-

opment and maintenance of bone mass. Dietary components,

such as protein, vitamins, and trace elements are required for

normal bone metabolism.8,9 Emerging evidence indicates that

boron (B) plays a role in bone formation and maintenance.10–14

To the best of our knowledge, the role of dietary B on alveolar

bone modelling and remodelling has not been addressed.

Thus, the aim of the present study was to perform a

histological and histomorphometric evaluation of periodontal

alveolar bone modelling and remodelling under a B-deficient

diet in mice.

Trace mineral mix 15.000

Total 1000.0

a Analyzed concentration of boron was about 0.07 mg (9 mmol)/kg.

To make a 3 mg boron/kg diet, a mix containing 0.0172 g H3BO3 and

0.9828 g dextrose replaced 1.0 g of ground corn in the basal diet.
b Composition of the vitamin mix (in mg): vitamin A palmitate

(500,000 IU/g), 16; thiamine HCL, 10; pyridoxine HCl, 15; nicotinic

acid, 30; DL-pantothenic acid, 48; vitamin B12 (0.1% in mannitol), 50;

folic acid, 2; biotin, 1; riboflavin, 27; vitamin K (phylloquinone), 1;

inositol, 50; para aminobenzoic acid, 5; vitamin D3 (400,000 IU/g),

2.5; and dextrose, 3,742.5.
c Composition of the macro-mineral mix (in g): CaHPO4, 17.0; KCl,

7.0; and Mg(C2H3O2)24H2O, 5.3.
d Composition of the trace element mix (in mg): NaCl, 2000;

Mn(C2H3O2)24H2O, 45; CuSO45H2O, 30; Zn(C2H3O2)22H2O, 84; iron

powder (dissolved in HCl), 75; NaHAs47H2O, 5; KI, 0.4; NaSeO35H2O,

1.4; Cr(C2H3O2)32H2O, 2; NH4VO3, 0.3; (NH4)2MoO4, 1; NaF, 2;

NiCl6H2O, 3.7; NaSiO29H2O, 50, and ground corn (acid-washed),

12700.2.
2. Materials and methods

2.1. Animals

Thirty male weaned (21 d old) Swiss mice were used

throughout. They were housed in steel-cages and maintained

on a 12:12 h light–dark cycle. All animal experiments were

carried out in keeping with the guidelines of the National

Institutes of Health for the care and use of laboratory animals

(NIH Publication No. 85-23, Rev. 1985). The protocol was

examined and approved by the Institutional Ethics Committee

of the School of Dentistry, University of Buenos Aires.

2.2. Experimental design

The animals were assigned to 1 of 3 groups, with each group

containing 10 animals: control diet (GI, 3 mg B/kg); B-deficient

diet (GII, 0.07 mg B/kg); and pair-fed with GII (GIII). The basal

diet (Table 1) similar to that used in other studies10,15 was

based on ground corn that was acid-washed16 to reduce its

boron content, and vitamin-free casein. It contained adequate

amounts of all known essential nutrients plus some mineral

elements (e.g., nickel, silicon, vanadium) in nutritional

quantities that have been found beneficial to bone health.17

Fresh powder diet and deionized water in plastic cups were

provided ad libitum. Body weight and food intake were

determined. The animals were maintained on their respective

diets for 9 weeks and then sacrificed. The mandibles were

resected and fixed in 10% formalin solution.

2.3. Histological processing

The mandibles were decalcified in 10% EDTA and embedded in

paraffin. Buccolingually oriented sections were obtained at the

level of the mesial root of the first lower molar and stained

with hematoxylin–eosin.

2.4. Histological and histomorphometric evaluation

Histological studies and histomorphometric measurements

were performed separately on the buccal and lingual sides of

the periodontal alveolar bone, which correspond to remodel-

ling and modelling activities, respectively. To clearly define

the sides it was necessary to establish the apical limit of the

alveolus.18,19 Within this context a line a was drawn tangent to

the upper cortical of the mandibular canal. Another line was

drawn between the uppermost points (A and B) of the buccal
and lingual crests. Line CD was drawn so that it bisected the

distance between A and B and was perpendicular to line a. In

this way the buccal side was limited by points A and D, and the

lingual side by points B and D (Fig. 1). The following

parameters were determined: percentage of osteoblast surface

(ObS), eroded surface (ES), and quiescent surface (QS).

Osteoblast surfaces are covered by osteoid seams and mature

osteoblasts. Eroded surfaces are scalloped by Howship’s

lacunae with or without osteoclasts. Quiescent surfaces are

covered by bone lining cells. Histomorphometric evaluation

was performed using a microcomputer-based image analysis

system (Kontron Elektronik Company, Munich, Germany).

2.5. Statistical analysis

The values for each treatment group were presented as

mean � standard deviation.

The statistical significance of the data was determined

using the analysis of variance test (ANOVA). When ANOVA

showed a significant difference, the Newman–Keul’s multiple-

range test was used to define the differences (P < 0.01) among

groups.
3. Results

3.1. Body weight and food intake parameters

No statistically significant differences in food intake and body

weight were observed between groups (data not shown).



Fig. 1 – The buccal side of the periodontal alveolar bone was

considered to lay between points A and D; the lingual side

was considered to lay between points B and D. 1:

mandibular canal.
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3.2. Histological and histomorphometric findings

3.2.1. Buccal plates
Light microscopy observation revealed, for GI animals, a

predominance (52 � 9%) of bone surface lined by mature

cuboidal osteoblasts (ObS) and bone lining cells (QS) (48 � 9%).

2 � 3% of the bone surface was lined by ESs (Figs. 2A and 4A).

In comparison to group I, group II animals exhibited a

statistically significant reduction (63%, P < 0.01) in the per-

centage of osteoblast surfaces (ObSs, 19 � 10%) concomitantly

with an increase (58%, P < 0.01) in quiescent surfaces (QSs,

76 � 11%). No statistically significant differences was observed

for eroded surfaces as compared to GI and GIII animals

(Figs. 2B and 4A).

Group III animals did not show any statistically significant

differences with GI animals for any of the parameters

evaluated (Fig. 4A).

3.2.2. Lingual plates
The ObS (60 � 5%) predominated in GI animals. QS comprised

40 � 7% of the total (Figs. 3A and 4B).

Group II animals exhibited a statistically significant

reduction (48%, P < 0.01) in ObS (31 � 7%) and a statistically

significant increase (73%, P < 0.01) in the surfaces lined by
bone lining cells (QS, 69 � 7%) as compared with group I

(Figs. 3B and 4B).

Group III animals did not show any statistically significant

differences with GI animals for any of the parameters

evaluated (Fig. 4B).

None of the groups (I, II, III) exhibited eroded surfaces in the

lingual plates.
4. Discussion

The present results provide, for the first time, evidence that

the dietary boron (B) deficiency affects the alveolar bone. The

histological and histomorphometric analysis evidenced an

alteration in periodontal alveolar bone modelling and remo-

delling in B-deficient mice in terms of a reduction in

osteogenic acitivity concomitantly with an increase in

quiescent surfaces. Eroded surfaces were not affected by B

nutriture. The differences between the buccal and lingual

plates would be due to the differences in behaviour between

plates, i.e. remodelling and modelling in the buccal and lingual

plates, respectively, as reported previously.18,19 After the

eruption period, the relationship between the teeth and their

supporting structures remains dynamic, as the former migrate

spontaneously within the alveolar process. Teeth migrate

mesially in humans and primates but bucco-distally in

rodents.1,20,21

Alveolar bone is constantly renewed by modelling and

remodelling mechanisms in response to functional demands,

local and systemic factors.1,18–22 Nutritional deficiencies in

animals have been shown to affect the periodontal tissues.4–

7,23–25 In this study, we determined that dietary B deprivation

alters periodontal alveolar bone modelling and remodelling by

inhibiting bone formation.

Epidemiologic data do not support the suggestion that

nutritional deficiencies play an important role in the aetiology

and pathogenesis of periodontitis.4 In addition, the efficacy of

nutrient supplementation for the therapeutic modulation of

the host response in the management of chronic inflamma-

tory periodontal diseases, remains to be determined.7,26,27 One

of the most practical applications of nutritional modulation of

chronic diseases may be nutrients that regulate the expression

of key inflammatory genes.28–30 It has been demonstrated that

dietary B supplementation may down-regulate inflammation

at a site upstream of cytokine gene activation in the NF-kB

regulated pathway.31 Further studies are necessary to evaluate

the role of B in the inflammation associated with periodontal

disease.

The present study reveals the importance of dietary B in

mice periodontal health. The exact cellular and molecular

mechanisms by which B deficiency affects alveolar bone

remains to be elucidated.

The present findings are consistent with other findings

indicating that B deprivation adversely affects bone formation

and microstructure. In one study13 the fourth lumbar

vertebrae from male rats exposed to B deprivation (0.1 mg/

kg diet) from conception to age 21 weeks were examined by

microcomputed tomography and compared to vertebrae from

rats fed supplemental B (3 mg/kg diet). Boron deprivation

decreased bone volume fraction and trabecular thickness, and



Fig. 2 – Microphotograph of the buccal side of the periodontal alveolar bone. (A) Control diet (GI, 3 mg B/kg) for 9 weeks. Note

the bone surface lined by mature osteoblasts. (B) B-deficient diet (GII, 0.07 mg B/kg) for 9 weeks. Note the bone surface lined

by bone lining cells (hematoxylin–eosin stain; original magnification 400T).
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increased trabecular separation and structural model index (a

lower value or more plate-like structure is preferable).

Interestingly, B deprivation does not markedly affect the

calcium and phosphorus concentrations in bone. Instead, B

deprivation affects the concentrations of mineral elements

(e.g., magnesium, potassium, copper, zinc) 10,13 associated
Fig. 3 – Microphotograph of the lingual side of the periodontal alv

the bone surface lined by mature osteoblasts. (B) B-deficient diet

by bone lining cells (hematoxylin–eosin stain; original magnific
with the formation, differentiation and activity of osteoblasts

and osteoclasts. The mineral changes in bone, in addition to B

deprivation decreasing alveolar bone osteoblast surface in

rats14 and mice (present study), and chondrocyte density in

the growth plate of proliferation of chicks,32 suggests that B is

beneficial to bone growth and maintenance through affecting
eolar bone. (A) Control diet (GI, 3 mg B/kg) for 9 weeks. Note

(GII, 0.07 mg B/kg) for 9 weeks. Note the bone surface lined

ation 400T).



Fig. 4 – Histomorphometric study. (A) Buccal side of the

periodontal alveolar bone. (B) Lingual side of the

periodontal alveolar bone. Values are means W S.D.; (�)
P < 0.01 compared with GI values. Percentages of

osteoblast surfaces (ObSs), eroded surfaces (ESs), and

quiescent surfaces (QSs).
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osteoblast and/or osteoclast presence or activity and not

through affecting bone calcium concentration.

In conclusion, our findings suggest that dietary B depriva-

tion in mice alters periodontal alveolar bone modelling and

remodelling due to an inhibition of bone formation.
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